
Modeling Polymer Masses Domestically and
Through Trade to Support Greenhouse Gas

Emission Estimations

Abstract: Considering material both fully domestic and traded, this document
presents data and methods for estimating polymer-level volumes. Supported by
these new data as well as resources from the literature, this work also provides
guidance for adding greenhouse gas emissions calculations. Finally, in addition
to presenting these approaches, this document also details options to support
equity.

Introduction
Polymer-level volumes and greenhouse gas emissions may help inform ongoing
treaty negotiation by providing a more holistic view of policy impacts (UNEP,
n.d.). That in mind, this methods document describes how to integrate green-
house gas emissions (“GHG”) and polymer volumes into projections.

Prior work
The literature provide a number of resources discussing both sector-level plastics
production and greenhouse gas emissions. For this study,

• Geyer, Jambeck, and Law (2017) offer sector-level polymer ratios.
• Zheng and Suh (2019) offer polymer-level production and conversion emis-

sions as well as GHG associated with different end of life fates.

This document extends on prior work by using these values in the context of:

• Potential policies as a way to better understand intervention implications.
• Regional-level polymer calculation.

Specifically, these resources integrate into the modeling approaches discussed
elsewhere in these supplemental materials.
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Projections from modeling
The upstream models have access to following inputs as discussed elsewhere in
supplemental materials:

• Overall production by region1.
• Sector-level consumption by region.
• Lifecycle distributions by sector.
• Net goods trade by sector by region.
• Net waste trade by region and fate.

As prior work provides polymer ratios at the sector-level, this method sets aside
production numbers but can take advantage of waste mass predictions by fate.
Therefore, modeling makes the following available with forward prediction:

• Sector-level consumption.
• Net goods trade by region.
• Net waste trade by region.
• Waste mass after trade by region and fate.

These are provided longitudinally and are manipulated by policy simulation.

Method
This method calculates the the total GHG emissions (E) for a region as follows:

E = Egoods + Ewaste

These terms are explored in detail below.

Assumptions
To use these data, this study employs the following assumptions:

• Assumption 1: Any plastic types not explicitly mentioned are assumed
to be sufficiently approximated by the GHG of the “other” type offered by
literature.

• Assumption 2: These global summary numbers offered by the literature
sufficiently approximate regional GHG values.

• Assumption 3: Mismanaged waste causes 0 kg CO2e/ton.
• Assumption 4: Production, conversion, and end of life are the only

sources of GHG to be included in calculations2.
1Not available at sector level.
2As an extension of Assumption 4, note that this study also assumes emissions from

trade itself (shipping) are not included in calculations.
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• Assumption 5: The sector baseline polymer ratios sufficiently approx-
imate the polymer ratios under policy interventions or, in other words,
policy interventions do not change polymer ratios for the purposes of GHG.

Though further discussed below, the method also begins by assuming the following
before exploring their relaxation:

• Assumption 6: Emissions for goods trade are assigned to the region of
production.

• Assumption 7: Emissions for waste trade are assigned to the destination
region.

• Assumption 8: Average of global trade sector ratios approximates actual
regional volumes.

Discussion further examines these assumptions and offers guidance for future
work.

Consumption
Egoods refers to GHG associated to goods either both produced and consumed
within the same region or exported from a region. Here p refers to a single
polymer and s refers to a sector:

Egoods = Σ( Pratio(p,s)
Psector(s) ∗ (Eproduction(p) + Econversion(p)) ∗ m(s))

Egoods = Σ(Pratio(p,s)
Psector(s) ∗ (Eproduction(p) + Econversion(p)) ∗ (Cdomestic(s) +

Texport(s)))

See below for sector of export.

Waste
Ewaste considers GHG associated to waste which is produced and stays within
the same region or is imported. Here f refers to a single fate.

Ewaste = Σ(Ewaste(f) ∗ m(f))

Ewaste = Σ(Ewaste(f) ∗ (Wdomestic(f) + Wimport(f))

This study assumes that the waste fate propensities within a region are the same
for domestically produced waste and imported waste:

Ewaste = Σ(Ewaste(f) ∗ Wtotal(f)

Note that, in practice, traded waste remains small relative to domestic waste
but, as discussed below, concerns for equity still necessitate the calculation of
traded waste GHG.
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Trade
For a region r and sector s:

Texport(s, r) = %export(r) ∗ %tradesector ∗ Timport

Texport(s, r) = Texport(r)
Texport

∗ (Σ C(s,r)
C(r) ∗ Timport(r)

Timport
) ∗ Timport

In this formulation, the exports for a region are assumed to have the same sector
distribution as the global sector distribution of imports. Furthermore, these
ratios are expected to be an average of importer sector percentages where this
average is then weighted by the amount of imports for a region. While this
discusses goods trade, end of life trade follows a similar analogous formulation.

Projection
These derivations so far discuss treatment of historic data but variables like
consumption per sector may change over time in the future prediction. Therfore,
a projection phase operates in two parts: prediction and optimization.

Prediction

Modeling described elsewhere in supplemental material for the “base model”
only predicts the net overall trade, ignoring individual sectors or polymers.
However, in trying to introduce GHG, it becomes necessary to determine more
granular volume flows between regions. That in mind, this study considers two
alternatives:

• Structure 1: Predict sector-level and resin-level change in net trade
between years similar to base model: y(i) =̂ T (s,r,i)−T (s,r,i−1)

T (s,r,i−1) .
• Structure 2: Predict sector-level and resin-level net trade as ratios to

overall net trade predicted by the base model: y(i) =̂ T (s,r,i)
T (r,i) .

While Structure 1 offers directness, Structure 2 may prove more stable in
terms of output range. Therefore, this study uses historic data in the results
section to guide model selection. All that said, in both of these structures, two
variations are available:

• Variation 1: Predict goods and resin using separate models.
• Variation 2: Predict goods and resin within the same model by concate-

nating their one-hot encoded task vectors.

Once again, this study allows experimentation in historic data to guide this
decision. In any case, this extension of the earlier described net trade model
uses the same inputs except one-hot encodes polymer and sector.
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Optimization

In this method, modeling produces independent predictions by region / sector
but mass balance must be maintained:

• Invariant 1: ΣTnet(r) = 0
• Invariant 2: ΣTnet(s) = 0

In other words, the sum of sectors must equal the prior prediction of region net
trade and the sum of regions within a sector must equal 0. Given some expected
error in modeling, a form of optimization tries to maintain these constraints.
That in mind, a back-propagation-like approach calculates error and distributes
edits in the opposite direction (Gad 2023).

• Optimization: Alternate between operation through sector (Step 1)
and region (Step 2), going through each region per sector within a single
iteration. This tries to maintain proportionality but iterative edges closer
to mass balance.

• Step 1: For a single sector in iteration i and scaling x: T (s, r, i) =
T (s, r, i − 1) − ΣT (s,r,i−i)

ns
∗ x.

• Step 2: For a single region in iteration i and scaling x: T (s, r, i) =
|T (s,r,i−i)|

|ΣT (s,r,i−i)| ∗ (Tnet−expected(r) − Tnet(r, i − 1)) ∗ x + T (s, r, i − 1).

In this operation, scaling (x) is size of sector error divided by 10 but capped to 1.
See below for a diagram of this step which uses colors from Brewer et al. (2013).

Figure 1: Diagram describing the optimization phase.
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The results section considers the practical outcomes of this approach.

Results
In contrast to overall net trade for a region, this study finds considerable noise in
year to year changes in sector-level net trade. Therefore, this document suggests
using Structure 2. That said, given similar performance between options, this
study suggests Variation 2 for convenience. Finally, the optimization method
reduces error against invariants to 1 MMT or lower. Like with the base model,
the sweep prefers random forest.

Stability
Unlike regional net trade at the level of overall resin and goods, per-sector trade
sees considerable noise year to year. Even if models perform well in predicting
these trends, this volatility could “cascade” downstream into other modeling for
consumption.

Figure 2: Year to year percent change in sector trade.
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This in mind, unlike Structure 1, consider that Structure 2 prevents noise
from any single sector from “polluting” other measures as downstream modeling
uses the more stable overall net trade number as a basis for consumption and
sector polymerization, preventing uncertainty from sector-level prediction from
influencing other models. Therefore, to safeguard stability in future data updates,
this study recommends Structure 2.

Prediction performance
This study first chooses between variations before evaluating performance in a
hidden test set and an out of sample task which uses temporal displacement.

Crossing structure

Having chosen Structure 2, this study finds very little difference between
variations in terms of performance. Using mean absolute error:

Variation Response Train Validation Sweep Selection
1 Goods 0.02 0.04 Random Forest
1 Resin 0.19 0.08 Random Forest
2 Both 0.12 0.06 Random Forest

With similar outcomes, combining both goods and resin into a single regressor
simplifies engineering so this study uses Variation 2.

Choosing parameters

Like in the base model set, a sweep across algorithms finds random forest most
performant using the following parameters within the scikit-learn implementation
(Pedregosa et al. 2011):

• Depth: 20
• Estimators: 15
• Max features: (nfeatures)0.5

With this selection, modeling sees an acceptable test3 mean absolute error of
0.09 with median error under 0.1 for all sectors and polymers except the “60%
LDPE, 40% HDPE” which remains under an acceptable MdAE of 0.15 and
which also sees the largest volumes.

3Using a 60% / 20% / 20% split across train, test, and validation.
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Out of sample error

Finally, like in the base model, one may consider an temporally displaced out
of sample error as a more realistic representation of expected performance for
future prediction.

Median Absolute Error Mean Absolute Error
In Sample (Train) 0.015 0.070
Out Sample (Test) 0.024 0.082

Here, out of sample refers to 2019 data. Regardless, this additional evaluation
task continues to find acceptable performance.

Optimization performance
To evaluate the optimization algorithm, consider the following error definition:

e = max(ΣTnet(r), ΣTnet(s))

Without optimization, this error generally extends up to 2 MMT but this
decreases to 1 MMT with this operation, generally requiring four iterations
before convergence.

Figure 3: Density of error before and after optimization.
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Some irreducible value of e seems to emerge due to cumulative model uncertainty.
However, in the scope of the broader volume predictions, this error remains
acceptable.

Discussion
This document next examines limitations as well as questions regarding accuracy
and equity.

Emissions and trade
This methods document notes potential issues regarding assignment of emissions
to the producer and the waste importer, addressing Assumptions 6 - 8.

Equity

Though these assumptions and resulting method may arise from natural model
structures, this attribution decision raises difficult equity questions. Should
the tool attribute emissions to the regions burdened with their management or
the regions which “caused” those harms through their consumption and waste
production? That in mind, this document next considers a method variation
which may address some of these concerns but potentially at the cost of accuracy.

Alternative

A more complex alternative may still calculate trade emissions at the producer
and waste importer region but then create a third trade category for GHG
burden. In this case, producers and waste importers would “export” their GHG
values back to consumers and waste exporters. That said, how should those
emissions be allocated across goods importers and waste exporters? Within
current data constraints, this operation introduces potential for error as it would
need to assume those emissions are attributed proportionally: assigning GHG
based on total imports of goods and exports of waste even though some regions
may trade with other regions disproportionately. This means one may assign
the wrong sector ratios and, thus, less precise GHG values. Due to these equity
concerns, this study uses this step in the main article body but the tool at
https://global-plastics-tool.org allows configuration of this behavior.

Other imprecision
Due to the net trade structure of the model, this approach requires assuming
that the distribution of imports sufficiently mirrors the distribution of domestic
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consumption. In practice, imports may be disproportionally driven by some
sectors but, due to the nature of net trade calculations, that bias becomes
invisible. This limitation could, for example, cause some of the GHG calculation
for a region to use domestic polymer ratios when a different region’s ratios should
have been used. In other words, in order to determine which polymer ratios
to import, this method must approximate actual sector imports with overall
consumption sector ratios.

This consideration is left for future research where more granular data are
required and, for the purposes of policy decisions in the context of this study,
this document suggests that this approximation remains acceptable.

Other future work
This proposal observes three possible avenues to remove the need for approxima-
tions or otherwise continue this investigation.

Sector net trade prediction

Approximations largely emerge due to trade. In supporting region-level GHG, it
becomes necessary to either determine or approximate the mass of production by
sector by region which, in turn, requires the volume of trade between individual
regions by sector. One could determine these region to region values, asking
modeling to predict this region to region net trade but such a step requires a
substantial increase in response variables:

nresponse = nregions ∗ nsectors

In practice, this involves data not currently available and also going from 4
responses to 28. It remains possible that modeling could sustain this increase
in complexity through a problem reduction similar to that seen for the one-
hot encoded sector but this proposal cautions that much of the prior machine
learning method worked to ensure performance despite limited data availability
(see elsewhere in supplemental materials). Regardless, this study leaves this
additional step to future research.

Regional GHG intensities

While global GHG projections do not require this step, Assumption 2 may prove
problematic for regional GHG calculations. Recognizing this limitation, this
study only reports on global GHG even as it offers regional polymer estimations.
Due to data limitations, this study, therefore, leaves incorporation of regional
GHG intensities to future work.

Change in energy mix

This study leverages the “current energy mix” scenario from Zheng and Suh
(2019) but that resource also offers “low carbon energy” projection which assumes
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that “the energy mix of the plastics supply chain . . . reaches 100% renewables
. . . by 2050.” Not presently considered in this work, future efforts may evaluate
and compare this alternative.

Updated architecture
Having adopted these recommendations, the model architecture shifts as follows:

Figure 4: New architectural diagram with these additions.

Note that this diagram was made using resources from (“Diagrams.net” 2023).

Conclusion
Providing polymer-level data in projections opens up an number of new use cases
for this study’s work. As discussed, one of those most valuable new avenues
is greenhouse gas emissions. However, other work looking for specific polymer
reductions could, for example, benefit from these model additions. All that in
mind, these methods are used in live tool and this study’s overall findings as
described in its main body.
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