
Machine Learning for Region-Level Prediction of
Plastic Production, Trade, and Pollution

Abstract: Machine learning method to predict future plastic production, trade,
and end of life fate. Responsive to socio-economic trends, this multi-model
system enables regionalization of global material flow projections. After sweeping
regressors ranging from simple linear models to sophisticated ensembles, this
investigation recommends random forest as validated by temporally in-sample
and out-of-sample hidden set tasks as well as regional trials.

Introduction
Prediction of global plastics involves tracing materials across the planet, volumes
and flows which relate to a number of socio-economic factors. For example, prior
work examines plastic waste in context of population and gross domestic product
(Hoornweg, Bhada-Tata, and Kennedy 2013). Still, some studies projecting
global plastic trends do not explicitly include GDP and population in extrapola-
tion (Geyer, Jambeck, and Law 2017). In practice, the level of granularity of
predictions dictates the degree to which modeling must include related variables.

Global prediction
As near-term global population and GDP generally continue their recent upwards
trajectory, predicting future plastic scenarios at the global level may treat these
related variables as latent (DESA 2022; OECD 2023). With literature precedent,
drawing past trends forward maintains the desirable simplicity of extrapolation
through single variable linear models1 without requiring other socio-economic
inputs (Geyer, Jambeck, and Law 2017).

Regional prediction
In contrast, near-term regional projections defy simple extrapolation. For ex-
ample, compare population and GDP expectations for the entire planet versus

1Polynomial regression is often considered as a form of linear regression (Pardoe, Simon, and
Young 2018). Extrapolation with a linear model means fitting first or second order polynomials
with year as the only input and the variable extrapolated as the response.
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China in isolation (DESA 2022; OECD 2023).

• Global level predictions expect increases in population and GDP similar
to historic trends.

• As discussed in literature, China-level predictions expect a national popu-
lation decrease alongside GDP deceleration in contrast to recent growth
(Dai, Shen, and Cheng 2022; OECD 2023).

Unlike global scale, simple extrapolation of plastics in China leads to implausible
projections as if nothing changes, indirectly predicting dubious increases in
per-capita Chinese consumption.

Figure 1: Visualized alongside UN population projections, linear model extrapo-
lation of plastic consumption ignores expected decreases in China’s growth.

This example in mind, sophisticated region-level predictions require bringing
those related variables into modeling, anticipating future changes not obvious
from “drawing” historic plastic values “forward” in isolation.

Methods
This article regionalizes global plastics projections by using related variables
(Geyer, Jambeck, and Law 2017; Hoornweg, Bhada-Tata, and Kennedy 2013).
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Specifically, models take socio-economic inputs:

• Population predictions from the United Nations (DESA 2022).
• Long term gross domestic product projections from the Organization for

Economic Cooperation and Development (OECD 2023).

Structurally, this method extends the material flow approach to four regions:
China, Europe (EU30), North America (NAFTA), and Rest of World (RoW).

Figure 2: Summary of high level data flows in system.

Though predicted individually, the system forecasts using a multi-model machine
learning system blended with traditional approaches.

Consumption
Prior work expects plastic consumption to increase so regressors commonly need
to make predictions outside the training data range (Geyer, Jambeck, and Law
2017). Therefore, models use a time displacement approach in which the goal is
not to predict absolute consumption but instead the change in that consumption
(response variable Rproduction).
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Csector−Csectorref = Rproduction =̂ fθ(∆years, ∆GDP , ∆population, region, sector)

This formulation uses the years between the reference year to year predicted,
one-hot encoded region, one-hot encoded sector, change in GDP, and change in
population as inputs to predict the change in production for the selected region.

Goods trade
Similar to consumption, this modeling approach attempts to constrain the output
domain. Therefore, the “goods trade” regressors predict a modified response
variable Rgoods which represents the ratio of goods either imported or exported
to overall consumption for a region.
Tgoods

C = Rgoods =̂ fθ(∆years, ∆gdp, ∆population, region, type, Rgoodsref )

Note that “goods” refers to all plastics traded before end of life and includes
the following one-hot encoded types: articles, fibers, resin, and other goods.
Put another way, the regressors predict this ratio from the years between the
reference year to year predicted, one-hot encoded region, type, change in GDP,
change in population, and the response variable value from the reference year.

Production
Modeling determines production (P ) mechanistically from consumption (C):

P = C − Tgoods

Tgoods refers to regional net trade of all plastics prior to end of life and may be
negative in the case of net exports.

Lifetime
Lifecycle distributions define the expected time delay from plastic being made
to reaching end of life (recycled, landfilled, incinerated, or mismanaged). This
article uses lifecycle distributions per sector as described in prior work (Geyer,
Jambeck, and Law 2017). Note that distributions apply to plastic consumption
in the region consumed before waste trade.

Waste trade
Similar to goods trade, the waste trade regressors restrict the output range with
a modified response variable Rwaste. However, modeling does not have access
to the amount of projected waste at time of training so creates this ratio using
consumption for a region:
Twaste

C = Rwaste =̂ fθ(∆years, ∆gdp, ∆population, region, Rwasteref , Fsword)

The regressors predict this ratio from the years between the reference year to
year predicted, one-hot encoded region, change in GDP, change in population,
the response variable value from the reference year, and a flag indicating if
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China’s National Sword policy is active in the year being predicted (Vedantam
et al. 2022).

End of life fate
Historic data frequently detail the percentage of waste in a region by fate and
modeling reflects this formulation in response variable REOL:
Wfate

Wtotal
= REOL =̂ fθ(∆years, ∆gdp, ∆population, region, fate, REOLref )

Having determined the mass of materials reaching end of life and after applying
waste trade, the system can apply these percentages to determine regional fate
mass. The regressors predict this percentage from the years between the reference
year to year predicted, one-hot encoded region, EOL fate (mismanaged, landfill,
incineration, recycling), change in GDP, change in population, and the response
variable value from the reference year.

Machine learning sweeps
Each sweep considers multiple modeling approaches:

• Linear models: Ridge regression with regularization parameters from
0 to 1 at increments of 0.2. Note that discussion explores fitting higher
order curves.

• Support Vector Regression: SVR with multiple kernels (linear, poly-
nomial, RBF) up to a degree of 4 and alpha ranging from 0 to 0.8 at
increments of 0.2.

• Regression Trees: Max depth of 2 to 20 at increments of 1.
• Random Forest: Max depth of 2 to 20 at increments of 1 with 5 to 30

estimators at increments of 5. Note that this tries each pair of max depth
and estimator count with estimators accessing all features, random log2
number of features, and random square root number of features.

• AdaBoost: Max depth of 2 to 20 at increments of 1 with 5 to 30 estimators
at increments of 5.

For additional details, see the open source pipeline repository. Using implemen-
tations from scikit-learn (Pedregosa et al. 2011).

Temporal distance
Note that the pipeline trains all models to predict not just from one year to the
adjacent but up to 5 years either in the future or in the past, further expanding
output ranges.

Application of predictions
The regressors estimate their response variables R individually per region but
the final projections require conversion to the total masses of production, con-
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sumption, trade, and waste. In this process, some predictions rely on others.
For example, the amount of waste in a NAFTA’s landfill relies on EOL fate
percentage and waste trade. Meanwhile, waste trade relies not just on NAFTA
but other regions as well. Therefore, the system estimates2:

• Production after consumption and goods trade.
• Amount of plastics reaching end of life after consumption.
• End of life mass after waste fate percentages, waste trade, and amount of

plastics reaching end of life.

Furthermore, the system normalizes predictions. First, the waste fate percentages
are normalized to 100% within each region:

Wfatenorm = Wfate

W

Similarly, for both goods and waste, this pipeline scales trade numbers after
conversion to mass based on the size of the unscaled trade numbers per region
so global net imports equal net exports. See the open source pipeline repository
for further details on the conversion of response variables to final prediction.

Results
Evaluation begins with traditional in-sample analysis. However, this article also
considers a various post-hoc evaluations.

In-sample performance
Modeling uses a train, validation, and test split constructed from all available
years of 67% of data for training and 17% for validation due to dataset size.

2Open source software provides a flow chart in Figure 2 (“Diagrams.net” 2023).
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Figure 3: Each model swept with validation errors of each response variable
converted to effective MMT error seen in final projections

While often not the lowest validation mean absolute error (MAE), random forest
offers strong hidden set performance with fewer signs of overfit compared to
others like AdaBoost. Structurally, random forest can handle expected non-
linearity and, suggesting stability, a number of the swept forests reflect similarly
strong performance. Given these results, this article chooses random forest for
all response variables.

Test MAE (MMT) Estimators Max Depth Max Features
Consumption 1.15 15 9 sqrt
Goods Trade 1.59 20 15 log2
Waste 0.01 30 19 sqrt
Waste Trade 1.29 5 10 all

The selected random forests’ test errors remain acceptable for all regressors.

Out-Sample performance
Practical usage sees models primarily making predictions in future years, time
ranges beyond the training data. Given the need for “out of sample” functionality,
this study confirms performance by hiding data after 2018 before training models
and evaluating 2019 predictions (avoiding 2020 consumption abnormalities).
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Figure 4: Best model performance by model type in the out of sample task.

Though the in-sample performance measures already select random forest, this
investigation reports metrics for all model types for completeness. Random forest
performs consistently well.

Regional performance and sensitivity
This effort aims to ensure strong cross-class performance in each retraining. Of
particular concern, region appears across all regressors and sharply imbalanced
performance in this axis could raise equity concerns. This in mind, analysis
retrains 100 random forests of the selected configuration for each response
variable with different training set selections to determine sensitivity to stochastic
effects and to validate that, across trails subject to noise, performance remains
acceptable in all regions.
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Figure 5: Frequency of each model’s MAE with results presented per response
variable per region across the 100 model trial.

Though China sees slightly elevated error, the MAE remains satisfactorily
contained with the consumption regressors comfortably below 2 MMT and the
ratios staying below 0.04. The discussion explores these results’ implications.

Discussion
This machine learning method enables responsiveness to socio-economic trends
while maintaining strong equity-respecting regional performance even as it leaves
some additional modeling approaches to future work.

Socio-economic trends
Returning to China as a motivating example, the machine learning approach
appears responsive to expectations for population and GDP (Dai, Shen, and
Cheng 2022).
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Figure 6: Example of a machine learning pipeline execution and how the approach
leads to projections which are more responsive to socio-economic factors.

This reflection of slowed plastics growth speaks to this method’s capability of
responding to socio-economic factors.

Linear models
The sweep includes linear models which perform relatively poorly. That said, this
article notes that time displacement and one-hot encoding may prevent strong
curve fitting results. Therefore, consider a follow-up experiment in which the
four response variables each get individually fit with both first and second-order
polynomial curves per region per class. For example, a single model predicts
electronics consumption in NAFTA3. Due to the very small data available for
each model, this sweep selects the “best” model through the out-of-sample task
alone.

Celectronics−nafta =̂ fθ(xgdp−nafta, xpopulation−nafta)

While these models may capture short term trends, this approach still leads
to dubious claims such as the end of electronic waste in NAFTA shortly after
2030. Poor generalization may partially explain inadequate performance of linear
models in the overall larger sweep.

3The same normalization of trade and waste apply to these trials and negative numbers are
set to zero.
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Figure 7: Example of unexpected linear model results showing NAFTA and
electronic consumption going to zero.

All this in mind, this article continues to recommend the random forest approach.

Limited dataset
The data available for modeling represent a valuable, extensive, and hard fought
contribution that still remains temporally limited. The overlap of the many
threads of data required for modeling only reliably span 2005 to 2020, just
enough to capture relationships to socio-economic variables. Future work with
expanded historical range may see improved performance but these models only
train on actual data given the potential equity concerns that come with uneven
levels of imputation across regions.

These design constraints in mind, consider that the training set in the sweep
only uses includes two thirds of those limited data to support evaluation. That
said, following general production machine learning practices, this models in the
production tool at https://global-plastics-tool.org are retrained with all data
prior to release to take full advantage of this small dataset (Brownlee 2017).
This means that the error measurements in this report remain only estimates of
the productionized system.
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Responsible AI
This project takes a number of steps to ensure equity in its results. This
includes structural choices like forgoing imputation but it also includes choices in
monitoring and sweeping as well. For example, model selection takes place with
consideration of overfitting given the potential for geographic bias. Additionally,
performance evaluation explicitly includes region as an axis of concern to prevent
major disparities in performance.

On that note, though finding no region with disproportionately high error com-
pared to others, China’s MAE remains slightly elevated. Possible explanations:

• In part due to policy activity such as National Sword, China shows sub-
stantial change within the recent dataset so, in its dynamic nature, may
become more difficult to predict (Vedantam et al. 2022).

• China predictions may be impacted by the nation’s high trade activity,
exposing it to additional uncertainty from other regions or trade numbers.

• Other still latent variables uniquely impact some regions like China and
later modeling may consider expanding inputs.

Despite these concerns, the error rates for all regions still remain well contained.
So, for the purposes of evaluating overall policy impact, the current model error
remains acceptable.

Additionally, this article acknowledges that the “rest of world” region groups
together many geographically, economically, and socially disparate populations.
Unfortunately, this characterization largely reflects data availability. Therefore,
this effort invites additional research to further regionalize these results.

Policies
In general, the pipeline leaves policy effects to the simulation engine built on top
of the machine learning outputs as discussed elsewhere in supplemental materials.
That said, in addition to policies under consideration, some governments have
already undertaken intervention which may dramatically impact results. The
historic data may not yet capture recent policies’ effects in “business as usual”
projections.

This in mind, this project addresses two major suites of policies which likely
impact mismanaged waste at the regional level:

• China National Sword: This policy causes a marked recent shift in
waste trade (Vedantam et al. 2022). Though very recent, its effects are
highly visible in the very end of the available dataset. Therefore, modeling
responds by adding a boolean variable for if the policy is active or not to the
input vector for the waste trade model, allowing regressors to “understand”
that a structural change has taken place without specifying the exact
nature of that change explicitly.
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• EU Waste Directive: This policy continues gradually over time with
some of its effects conflated potentially with GDP. That said, its legally
enforced mandate of limiting landfill to 10% by 2035 goes beyond historical
precedent (EC n.d.). Therefore, this pipeline includes this as a mechanistic
“policy” turned “on” by default in the projections.

The pipeline does not include other policies enabled by default because:

• Policies may be too localized to adequately model in the machine learning
phase given the coarseness of the existing data.

• The effects of those policies are not yet clear.
• The historic data capture intervention effects well even as they remain

latent.

That said, due to the open source nature of this work, others may be implemented
in the policy simulation layer after the pipeline. Additionally, more granular
regions achieved in future work may allow incorporation of additional known
policies that operate at the country or sub-national level.

Open source
The open source repository at https://github.com/SchmidtDSE/plastics-pipeline
offers an implementation of the described methods under a permissive open
source license. The research team invites collaboration on this shared public
resource.

Additional future work
In addition to the possibilities for future work described above, this article also
calls for future probabilistic predictions which incorporate understanding of
uncertainty in long term projections. To that end, much of the data leveraged
by this project do not offer uncertainty estimates themselves and this article
encourages future work in probabilistic quantification.

Acknowledgements
This article uses color schemes from ColorBrewer (Brewer et al. 2013).

Conclusion
This novel projection method builds upon prior work by incorporating machine
learning approaches to enable regionalization of plastics forecasting. Suggesting a
multi-model random forest system paired with traditional mechanistic techniques,
this open source contribution enables responsiveness to relevant socio-economic
factors like population and GDP while still affording substantial mechanisms for
inspection. Furthermore, this article examines questions of equity to encourage
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positive impact. Taken altogether, this research offers a solid foundation for
exploring the impact of global coordinated policy action while providing im-
portant region-level visibility into plastic trends. Finally, this project provides
guideposts to future efforts which may consider additional policies and further
granular regionalization of projections.
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